On group theory for quantum gates and quantum coherence

نویسندگان

  • Michel Planat
  • Philippe Jorrand
چکیده

Finite group extensions offer a natural language to quantum computing. In a nutshell, one roughly describes the action of a quantum computer as consisting of two finite groups of gates: error gates from the general Pauli group P and stabilizing gates within an extension group C. In this paper one explores the nice adequacy between group theoretical concepts such as commutators, normal subgroups, group of automorphisms, short exact sequences, wreath products... and the coherent quantum computational primitives. The structure of the single qubit and two-qubit Clifford groups is analyzed in detail. As a byproduct, one discovers that M20, the smallest perfect group for which the commutator subgroup departs from the set of commutators, underlies quantum coherence of the two-qubit system. One recovers similar results by looking at the automorphisms of a complete set of mutually unbiased bases. PACS numbers: 03.67.Pp, 03.67.Lx, 03.67.-a, 02.20.-a, 03.65.Fd, 03.65.Vf, 02.40.Dr

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Defect Terminolgy Beside Evaluation And Design Fault Tolerant Logic Gates In Quantum-Dot Cellular Automata

Quantum dot Cellular Automata (QCA) is one of the important nano-level technologies for implementation of both combinational and sequential systems. QCA have the potential to achieve low power dissipation and operate high speed at THZ frequencies. However large probability of occurrence fabrication defects in QCA, is a fundamental challenge to use this emerging technology. Because of these vari...

متن کامل

Implementation of Single-Qutrit Quantum Gates via Tripod Adiabatic Passage

We proposed and analyzed implementation of the single-qutrit quantum gates based on stimulated Raman adiabatic passage (STIRAP) between magnetic sublevels in atoms coupled by pulsed laser fields. This technique requires only the control of the relative phase of the driving fields but do not involve any dynamical or geometrical phases, which make it independent of the other interaction details: ...

متن کامل

Group theory for quantum gates and quantum coherence

Finite group extensions offer a natural language to quantum computing. In a nutshell, one roughly describes the action of a quantum computer as consisting of two finite groups of gates: error gates from the general Pauli group P and stabilizing gates within an extension group C. In this communication we explore the nice adequacy between group theoretical concepts such as commutators, normal sub...

متن کامل

Quantum Mechanics and the Mechanism of Sexual Reproduction

There are many claims that quantum mechanics plays a key role in the origin and/or operation of biological organisms. The mechanism of the meiosis, mitosis and gametes life cycle from the view-point of quantum for human has been represented. The quantum gates have been used to simulate these processes for the first time. The reason of several hundred sperms has been explained in the male too

متن کامل

Entanglement of an Atom and Its Spontaneous Emission Fields via Spontaneously Generated Coherence

The entanglement between a ?-type three-level atom and its spontaneous emission fields is investigated. The effect of spontaneously generated coherence (SGC) on entanglement between the atom and its spontaneous emission fields is then discussed. We find that in the presence of SGC the entanglement between the atom and its spontaneous emission fields is completely phase dependent, while in absen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008